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CALCULATION OF THE INSTANTANEOUS UNIT
HYDROGRAPH USING LAPLACE TRANSFORMS

P. Jchnson*

ABSTRACT

Most of the recently derived methods for the calculation of the instan-
taneous unit hydrograph using observed tainfall-runoff data from a catch-
ment are suggested to have in common the use of integral iransform
equations and linkage equations. A Laplace transform technique is
demonstrated as having direct analedy with the method of moments.
Potential accuracy of the Laplace method is illustrated by analysing syn-
thetic data and number of discharge data before the peak discharge, and
smaliness of the transform parameter, are proved to be important criteria.
Analyses of real data indicate the difficulty in applying such a method in
practice until better understanding of data inaccuracy and hydrograph
models is obtained.

INTEGRAL TRANSFORMS AND DERIVATION OF THE
INSTANTANEOQUS UNIT HYBROGRAPH
Calculation of a storm runoff hydrozraph by convoluting
effective rainfall with a unit hydrograph (U.IH.) or an instantaneous
unit hydrograph (LU.H.), is a criticised but nevertheless accepted
procedure in hydrology. It is represented by the integral equation:

0= [ it . a0 t—7)ds )

where Q(t) is the storm discharge hydrograph,
i(r) is the effective intensity of rain,
u(0, t—r) is the instantaneous unit hydrograph (LU.H.).

The determination of the LU.H. using observed rainfall and
runoff data in association with the convolution integral is also a
well recognized and much discussed problem. Active research has
gone into solving this problem and as a result, hydrologists are
now aware of a number of possible techniques by which the LU.H.
or the U.H. may be established.

The oldest and perhaps best known and most used method,
even today, attempts to calculate successive ordinates of the U.H.
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by successive solution of a set of equations representing consecutiik'
ordinates of the storm runoff hydrograph. The technique is noj
to be recommended, however, as any small error present in initj
computations tends to be amplified in succeeding calculations. To
overcome such inaccuracy, a matrix method using a least-squares
fit may be used to solve the same set of equations (Snyder, 1955y,
The least-squares method has a proven accuracy, a fact recently
reinforced by Laurenson and O'Donnell {1969). Since its inceptién
certain modifications and refinements have been suggested. one
notable example being the linear programming solutions of the
Wicner-Hopf equation with rational restraints (Eagleson ef al;
1966).
Alternative procedures to the least-squares method have been
studied for the last 15 years. During that time two basic techniques
have emerged. r e
The first of thase is related almost entirely to the mathematical:
subject of integral transforms which have the following general
form: B

T(s) mf :f(r) . p(sn)d ('2.)

where £(¢) is a known numerical or algebraic function of the inde- -
pendent variable ¢,
¢(s,t) is a known function of the indeperdent variable r and
a parametric variable s,
a, b are the limits of integration for ¢,
T(s) the transform is a resulting function in s only.

In simple terms 7'(s), defined numerically or otherwise, may
be looked upon as representing areas bounded by two limits of
¢ and parametric curves in s resulting from the product of £(¢)
with ¢(s,f). It happens that knowledge of 7'(s) as a function of
s may be used {o determine useful properties of £(¢) and conse-
quently of the various functions involved in convolution.

An illustration of the use of direct transforms in convolution
is given by Nash (1957, 1960). The transform adopted is a moment
transfornt, and the method developed to determine the LUH. is
referred to as the method of moments. The general transform is
given by

M(s)zf:’f(r) (1— 1)dt (3)

where 7 is the interval in ¢ from the origin to the centre of area
of £(1).

The result of applying this transformation to the runoff hydro-
graph and the convolution integral is a simple moment-transform
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generating function which performs as a linkage equation between
the moments of rainfall. runoff and the LU.H.

Q= ({+U) (4)

In this equation I* andl* in the expansion of the right-hand
side represent the sth order moments of I and U respectively (/,
and U,), not the sth power of the 1st moments. @, is the sth moment
transform of Q(1).

Numerical computation of I* and Q° etc., permits the direct
calculation of the corresponding U,. Nash shows how, in calculating
only the first two moments (s==1 and y==2), appropriate parameter
values of a two-parameter gamma distribution model of the LUH.
may be determined. In this way he effects the all-important
inversion of the transform.

P
A better known transform is the Laplace

L= [T e dr 5)

This transform has special relevance in the fleld of systems
analysis and its main features are well documented. It is especially
significant in that it reduces the convolution integral into a simple
equation from which the Laplace transform of the I.UH. is easily
calculable (Brown, 1965).

ie. U.=0,JT, (6)

where @ is the Laplace transform of Q(¢)
T, is the Laplace transform of i(s)
U, is the Laplace transform of u(z)

This equation is also a linkage equation.

Determining u(f), the inverse of U, is a problem which,
although referred to by several authors, has not yet been success-
fully achieved directly. In analogous fields of research this is not
the case and accurate general inversion does seem possible through
the use of Legendre polynomials and a quadrature technique
(Bellman et al., 1966).

In hydrology it seems that the only major work using Laplace
transforms was performed by Diskin (1967, 1968}, who made a
detailed study of the transfer function (the Laplace transform of
the LU.H.) and a special transfer function in relat.on to a number
of mathematical models of the I.U.H. He also investigated the
dependence of the special transfer function on different storms
and different catchments. Diskin (1967), O’Connor and Nash
(1968), and Diskin and Boneh (1968), have all discussed at length
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the relationship between the method of moments and Laplace:
transforms, . o

A second alternative procedure to least squares also uses:
integral transforms, but in this method the transforms are used -
only to calculate coefficients of series. Two notable examples of.
the series method are O'Donnell (1961} and Dooge (1964). The:
technique begins by assuming a function f(¢) to be represented
by an orthogonal series: :

f=y A4, 8(p) (7

where A, is the general coeflicient in the series, to be determined;
#{p.t) is a function of the independent variable ¢ and the parameter
3 .

The orthogonality property of The series permits the calculation
of each coefficient in the following manner:

Ap:w(p)f:f(t) . O(p.yde (3)

where w(p) is a necessary ‘weighting’ function in p; and it is noted
that in this sense the coefficients are integral transforms. In practice
the integral is closely approximated by numerical caleulation of an
equivalent finite series.

Substitution in the convolution integral of three such series,
representing rainfall, runoff and the 1.U.H. results, by identity, in
linkage equations between the three sets of coeflicients. By first
calculating the series coefficients of runoff and rainfall using a
series approximation to the integral transforms, the corresponding
unknown coefficients of the I.U.H. may then be determined. The
linkage analogy between this technique and the direct transform
technique as demonstrated by Nash is quite clear, but the series
method has the immediate advantage that inverse transforms are
not required.

LAPLACE TRANSFORM AND THE GAMMA MODEL

The general implications of the foregoing brief survey of
-methods to determine the LU.H. indicates that any direct transform
method or orthogonal series method can be expected to reduce
to the solution of intergral transforms which, when combined with
the convolution integral, result in linkage equations. For the direct
transform method only, an inverse transform will be reguired to
define the L.U.H, as a function of time. This may be achieved in
one of two ways: firstly and approximately by assuming the TUH.
to be of a definite mathematical form, or secondly and more
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accurately by using series approximations in conjunction with
quadrature techniques. The former method has recently been
studied by the author with reference to the Laplace transform.

The method is illustrated by assuming the LU.H. to be repre-
sented by the gamma distribution, after Nash (1957).

u(0,0y = (1/kv r) (¢ k)t e-ilk ©)

where n,k are two parameters, suitable values of which are to be
determined.

The Laplace transform of the above expression is well known:

T.=1/(14ks)" (10)

Assuming that the Laplace transforms of discharge and rainfall
can be calculated for at least two valuesrof s, g and r respectively,
then through linkage equation (&) we obtain

(14 k) =T1,/0,

(11)
(1+kg)* =10,
Equations (11) may be combined and simplified to give
(14-rk) = (14 gk)* (12)
n(7,/3,)
where = (13}
In(Z,/Q,)

Equation (12) is implicit in only one unknown k. Solving
for &, n may be calculated directly from

In(7,/3,)
" In(1+kg)

The method implied in the above equations to determine
n and & is analogous to the method of moments; there are three
steps in the solution:

n (14)

(a) Integral transforms of rainfall and runoff data are deter-
mined by equation (5) {usually numerically).

(b} Corresponding transform values of the LU.H. are then
determined through the linkage equation (6).

{c) Inverse transformation is performed through equations
(12} .to (14), which are thereby equivalent to Nash’s equations
(4) (1957).
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In contrasting this technique with the method of moment
it is readily appreciated that in a hand computation the method g
moments is the easier to apply. This is especially true in the calculy
tion of k, for which the Laplace transform method involves the
solution of an implicit equation. When programmed for compute
evaluation, however, the length and complexity of computation’ iy
either method ceases to be of significance. Also, solution of equatior
(12) may be achieved quite simply. An initial estimate of & ma
be determined from the equation

k=3/g(r/gz)*/ (13)’

after which only one or two closer approximations, using th

Newton-Raphson iteration process, are required to evaluate &

to within one percent of its true value.
bl

POTENTIAL ACCURACY OF THE METHOD

The general accuracy of the proposed method is consxderead'.-;
to depend on at least three possible sources of inaccuracy. These:*
may be summarized as follows:

{a) Basic inaccuracy in rainfall-runoff data due to errors in
measurement, estimation of areal rainfall, separation of effective
components and synchronization of data measurement.

(b) Failure to represent accurately rainfall and runoff data,
resulting in erroneous estimates of the Laplace transforms.

(c)} A general instability involved in the numerical inversion
of the LU.H. transform during the calculation of » and k.

The first of these may possibly be considered the most import-
ant problen: of the three but is outside the intended scope of this
paper. The many attendant problems associated with (a), how-
ever, certainly cannot be investigated with assurance until sources
of inaccuracy represented by (b) and (c) are investigated and
obviated.

Rainfall-Runoff Representation and Transforms

Standard representation of rainfall is a simple bar diagram,
each bar representing an average inlensity of rainfall during a
period of time of suitably small duration. In an overdamped system,
such as a natural catchment, this type of representation is certainly
suitable provided the intensity averages are for nol too long a
duration and fairly represent the catchment areal average. The
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technique is well illustrated by Diskin (1964) and is summarized
here:
i =L[H@) -H({-1)]+LIH({-7) ~H{t~2314+ ... ..
..... + 1 H[t~(m=-1)r]1-H(t-mz)} (16)

where I,, I. . . . . I, are the average effective rainfall intensities
during time intervals of duration =; H(t), H{i-7) etc. are the
Heaviside unit function; m refers to the last discrete duration of
effective rain. The Laplace transform of this equation is of a
standard form:

T;£[11+ (I.—L)e*+ (I;—L)e ™+ ... .
..... 4 (L —Ly_a)e= s g7 ] (17)

Runoff representation is not as straightforward. Farly attempts
by the author at calculating Laplace transforms of runoff were
based on forming individual productssbetween Q(7} and e~* for
increasing values of 7 and then forming the sum nof incremental
areas between adjacent product pairs. These attempts were abortive
and led to wildly inaccurate estimates of & and n. A mathematical
representation was sought therefore which would not.only inter-
polate values of runoff accurately but which would also permit
simple determination of the Laplace transform. The most suitable
function studied was the Fourier sine series.

Q(t):;b,, sin (pwt) (18)
The Laplace transform of this series is given by
_ bosw »
5= — e 1-—esT 19
0=+ Gyl )
p=1

where s is the number of data values,
b, is the general coeflicient of the series,
T is the total duration of the discharge hydrograph,
w is the basic harmonic.

The method seems to have three major attributes. Firstly, it
provides good curvilinear interpolation between data points and
hence helps to ensure accurate transforms. Secondly, it tives
absolute fit at the origin, a feature which is not tru, of the full
Fourier series; and as the Laplace transform is notab.y sensitive
to large errors for small ¢, this criterion is of paramount importance.
Thirdly, it seems to avoid negative values of transforms for large
s due to small inaccuracies of fit, a feature which was occasionally
found to occur in the full Fourier series.
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The terms in parentheses in the numerator of the algebraj
expression of the series, equation (18), are introduced to reduc
the transform of the periodic function over the entire interva
0<1<co, to one only for the interval 0<¢<{T. Usually this term
for all practical purposes may be assumed to be unity. _

Accuracy of fit by the Fourier sine series was generally foun
to be within 10-% parts of the basic unit of the data values.

Instability of & and n Calenlations

To study basic instability, a computer programme was written .
embodying the general principles of the method outlined, Added
to the programme was a procedure fo synthesize a set of discharge .
data for a given pair of n and % values and defined patterns of :
effective rainfall. The programme was designed to analyse the -
synthetic data and calculate a serigs of values of » and k corres- |
ponding to a series of paired values of g and r as shown in equations
(11).

‘Two synthetic procedures were adopted. The first and simplest
assumed an instantaneous input of rainfall. In this way numerical
evaluation of the unit hydrograph from the LU.H. and any asso-
ciated inaccuracies were avoided. The only inaccuracies possible
were those due to rounding off within the computer, small errors
in the lack of fit of discharge data by a Fourier sine series, and
instability of the equations being analysed in determining the
inverse of the transform. Three pairs of n and & values were studied,
representing an expected practical range. In conjunction with each
pair, the effect of time interval size between runoff data values and
hence number of runoff data was also investigated.

The second synthetic procedure allowed for simple discrete
inputs and combinations of discrete inputs of different magnitude,
equations (16) and (17). In this, numerical evaluation of the unit
hydrograph was necessary.

Results of instantaneous input investigations are shown in
graphical form (Figs. 1, 2 and 3). These show that calculations
of n and & by the method described, for different values of the
parameter pairs g and r, resulis in a field of contours representing
different values of n and k. The general pattern of behaviour of
the solution would seem to depend on the value of # and k used
to synthesize runoff dafa; this implies that the technique is sensitive
to the peakedness of the discharge hydrograph.

Correct values of » and k& are achieved, and these are seen
to occur for small values of g and r. Values of g and r to give the
correct value of & are not necessarily the same as for the correct
value of n.
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Results for rainfall input of finite duration having varying
distribution of intensity with time are found to behave in exactly
the same way, indicating that numerical evaluation of the integral
to derive the unit hydrograph for convolution had negligible effect
on the process. A summary of the main features of the investigation
is given in Table 1.

Investigation of the results led to two major conclusions:

(a) Using a Fourier sine series to represent a discharge
hydrograph, the possibility of obtaining correct values of » and k
will only be assured if the peak of the hydrograph occurs at Jeast
4, and preferably 6 to 10, time intervals after the start of the hydro-
graph, The absolute value of the time interval and number of data
used seem incidental to this requirement. The rapid divergence
of n and % values shown in Figure 1 for small values of g and r
is considered to be entirely due to too few data before the peak
discharge and hence lack of curvature fit of the Fourier sine series.

(b) Even with the above criterion satisfied, values of » and &
are still noted to deviate from their true values as g and r increase.
As this could have been due to small differences between the actual
and fitted hydrographs, a small analysis was carried out to study the
effect. (It is mentioned in passing that the same analysis would
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be very useful in studying also the effects of inaccurate separatios
of stormwater from base flow, during the analysis of real data,
An equation was developed which enabled an estimate of error i
k due to errors in the discharge hydrograph:

[(AQ/0z - (88 [Inz - In(r/g) ~ (2~ 1)/z]

Ak=(2/g)r/gz)" /= — =
(Z - l)zin(lg/Qg) (20) .

where Ak is the expected error in k,

a0, and AQ, are the calculated errors of Laplace transforms
of discharge data due to an error in the data, AQ(.

In a computer programme the equation is easily evaluated
and was thereby used to estimate expected error in k due to
observed lack of fit. Values of Ak were generally found to be of
the same order of magnitude as (sometimes greater and sometimes
iess than) the order of magnitude of the lack of fit.

It was concluded therefore that the general divergence of %
and » values as g and r increase, is probably due to sensitivity of
the technique to numerical evaluation. To guarantee any chance
of obtaining appropriate values of n and k for real data, therefore,
only values of g and r in the region of 0.05 to 0.2 should be used.

TRIALS WITH REAL DATA

This preliminary study into the possibility of obtaining an
accurate inverse of the Laplace transform of the IUJH. was com-
pleted with the analyses of real flodd hydrograph and rainfall data
from different catchments. For reasons already referred to and

TABLE 2-— Variaticn in & and n values derived from real data for
Ashbrook, England.

Parameters
8 r k n
0.05 0,10 16.08 1.49
0.15 15.12 1.56
.20 14.42 1.62
0.25 13.84 1.67
(.30 13.30 1.72
0.35 1281 1.77
.40 . 12.35 1.83
0.45 11.92 1.88
.50 11.52 1.93
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TABLE 2 — (ccatd.)

Parameters
g r k n

0.10 015 13.65 1.66
0.20 12.98 1.72

025 12.38 177

0.30 11.83 1.83

0.35 11.31 1.8%

0.40 10.83 1.94

0.45 10.39 2.00

0.50 9.99 2.06

0.15 (.20 12.07 1.79
0.25 P 1143 1.85

0.30 10.85 1.91

.35 1031 1.98

0.40 9.81 2.04

0.45 9.36 2.1t

0.50 8.95 217

0.20 0.25 10.65 1.92
.30 10.04 1.99

0.35 9.48 2.06

0.40 8.97 2.14

045 8.52 2.21

0.50 8.11 2.28

025 0.30 9.33 2.08
0.35 8.76 2.15

0.40 8.25 2.23

045 7.80 2.3

0.50 741 2.38

0.30 0.35 8.12 2.24
0.40 7.62 2.33

045 7.19 241

0.50 6.81 2.49

0.35 0.40 7.08 2.42
045 6.66 2.51

0.50 6.30 2.59

0.40 0.45 6.21 2.61
0.50 5.87 2.69

045 0.50 5.52 2.79
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the simple fact that the gamma model is probably not fully repré
sentative of all possible I.U.H. shapes, the analyses of the rea
data were not expected to vield consistent results, nor did they.:
Because of a useful direct comparison with values derived by Nas
(1957), only the results for data from Ashbrook, England, wil
be referred to here. i

TABLE 3 — Example of results using real data for Ashbreok, England:
(n=1.83, k=11.83) :

Predicted Actual
Time LU.H. discharge discharge
(hrs) {clisecs) (cusecs) (cusecs})
0.00 0.000 0.00 0.00
3.00 13.996 r 7353 30.00
6.00 19.729 291.44 340.00
9.00 21.587 822.01 980.00
12.00 21.344 1249.72 1320.00
15.00 19.975 1391.30 1390.00
18.00 18.05% 1386.23 1280.00
21.00 15.942 1302.90 1160.00
24.00 13.832 1181.13 1040.00
27.00 11.843 1044.69 910.00
30.00 10.034 907.65 790.00
33.00 8.431 777.96 680.00
36.00 7.035 659,73 580.00
39.00 5.836 354.69 480.00
42.00 4.817 463.09 390.00
45.00 3.959 384.33 320.00
48.00 3.242 317.36 280.00
51.00 2.646 260.93 240.00
54.00 2.153 21373 210.00
537.00 1.748 174.49 180.00
60.00 1416 142.03 155.00
63.00 1.144 115.32 135.00
66.00 0.923 93.41 115.00
69.00 0.743 75.50 100.00
72.00 0.597 60.91 85.00
75.00 0.480 49.05 70.00
78.00 0.384 39.44 65.00
81.00 0.308 31.67 60.00
84.00 0.246 25.39 55.00
87.00 0.197 20.34 50.00
90.00 0.157 16.27 45.00
93.00 0.125 13.00 40.00
96.00 0.100 10.38 35.00
$9.00 0.079 8.27 30.00
102.00 0.063 6.59 25.00
105.00 0.050 5.25 15.00
108.00 0.040 4,18 5.00
111.00 0.032 132 0.00




The range of n and k values calculated for various pairs of
¢ and r is shown in Table 2. The diversity, particularly for small
g and 7, is obviously the result of using either an inaccurate model
or inaccurate data, or both. Convolution of the LU.H. with effective
rainfall was performed for each n and k pair, and one example of
the result is compared with the actual discharge hydrograph (Table
3). This example, like several others, is not very satisfactory and is
neither better mor worse than the result derived by Nash for
11 and & values of 2.1 and 10.8 hours respectively. As an illustration,
however, it does point to the possible applicability of such a method
when there is perhaps more understanding of data inaccuracy and
separation techniques, and a more generally representative LU.H.
model.
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