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ABSTRACT

Linear moments (L-moments) of statistical distributions do not raise data to
powers of 2, 3 and 4 as required for variance, skewness and kurtosis respectively,
and thus give better parameter estimates for data containing outlying vatues,
L-moment ratio analogues of coefficients of variation, skewness and kurtosis
are more reliable for discerning homogeneous regions and identifying likely parent
statistical distributions. L-moments are estimated for 275 annual maximum flood
peak series from New Zealand to illustrate their use in regional flood frequency
studies.

INTRODUCTION

There are many ways of fitting statistical distributions to sample data, e.g.
graphical, methods of moments, maximum likelihood, least squares, maximum
entropy, probability weighted moments, etc. All methods quantify parameters
of statistical distributions using the sample data. The method of L-moments
equates linear combinations of the sample data to corresponding theoretical
expressions involving parameters of statistical distributions in order to specify
these parameters. It is mathematically equivalent to the method of probability-
weighted moments, which was used by McKerchar and Pearson (1989, 1990)
for New Zealand floods. Conventional moments; i.e. second, third and fourth
moments raise raw data to powers of 2, 3 and 4 respectively, to obtain estimates
of standard deviation, skewness and kurtosis; L-moments avoid non-linear
transformations of data. Use of non-linear transformations can Jead to distortions,
and hence poor parameter estimates, when there are outlying values in the data.

Recent hydrological literature on statistical theories for dealing with annual
maximum flood series (e.g. Hosking er al. 1985a; Lettenmaier and Potter 1985;
Wallis and Wood, 1985; Lettenmaier er a/ 1987, Cunnane, 1989; Wallis, 1989:
Potter and Lettenmaier 1990, Hosking, 1990; Hosking and Wallis, 1990} has
shown that probability-weighted moments and L-moments often are superior
to standard estimation techniques, particularly for regional studies.
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FIG. i—L-moment ratios of some common statistical distributions. The EV2 distribution
is the GEV curve to the right of the EVI point, and the EV3 is the GEV curve
1o the left.

Population L-moment ratios (L-CV, L-skewness, L-kurtosis), analagous to
coefficients of variation, skewness and kurtosis, are mathematically bounded.
However conventional moment ratios are unbounded, which is a disadvantage
since sample estimators are always bounded (Kirby, 1974), and so cannot attain
the full range of population values. However, sample L-moment ratios can take
on all feasible vaiues for population L-moment ratios (Hosking, 1990). This
advantage can be utilised, using L-moment ratio diagrams comparing sample
values from a number of sites with population values of several statistical
distributions. Hosking and Wallis (1991) have developed statistical tests for
decisions on regional groupings and likely distributions for floed frequency
analysis based on L-moment ratio diagrams.

In this paper L-moments are briefly defined (they have been extensively defined
elsewhere e.z. Hosking, 1990; Chowdhury et 4l, 1991), and then applied to
regional flood data from New Zealand. :

L-MOMENTS

Population L-moments

Population L-moments (A, r = I, 2, 3, etc) arc defined as hnear combinations
of expected values of order statistics (Hoskmg, 1990). The first L-moment (A1)
is the mean of a statistical distribution, and is identical to the first conventional
moment. The second L-moment (A;) is a linear measure of spread or dispersion °
analagous to standard deviation. L-moment coefficient of variation is defined
as L-CV = 7 = Az/A). Other L-moment ratios are’ 7 = Afhp for r = 3, 4, 5%
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etc. Hosking (1990) shows that 73 and 74 are measures of a distribution’s skewness
and kurtosis respectively. 73 is called L-skewness and 7 is called L-kurtosis.
L-moment ratios are bounded so that |=|<1 for r = 3, 4, etc, and for r = 2
when the statistical distribution extends only over positive values {e.g. floods).

For any statistical distribution, L-moments can be defined in terms of the
distribution’s parameters, e.g. for the two-parameter Extreme Value Type I (EV1)
distribution, where cumulative distribution function F (x} = exp[-exp[-[x-u}/]]
and u and « are its parameters: A) = u + 0.5772¢ and A; = /2. Hosking
(1990) lists corresponding expressions for nine other distributions. These
expressions can be used with sample L-moments to estimate distribution
parameters. Figure | shows different statistical distributions in the L-kurtosis-
L-skewness plane. Two-parameter distributions plot as single points in this plane
(e.g. EV1), three-parameter distributions as curves, and four or more parameter
distributions as areas.

Sample L-moments
Unbiased, asymptotically normal sample estimators of population L-moments
A from an ordered nsample x) T = .. .S xforr=1,2,3, 4 are:

n
[l = E xi,’n
h=  Z(x-x)/(n-1)
all i
L= 2 X (x-2x+x)/n(n-1)(n-2)
all >k
= 63%(x- 3%+ 3xn - x)/n(n-1)n-2)(n-3)

all Dk

{| is the usual sample mean X. L-CV is naturally estimated by ///;, L-skewness
by i/k, and L-kurtosis by L/ 7.

The physical meaning of 4, ; and / is illustrated in Figure 2. For 4, if any
two values tend to be close together (Fig. 2a) then 4 will be smaller than if
they are far apart (Fig. 2b). Thus  measures dispersion of a sample. For £,
if the lower two values of any subsample of three tend to be closer (Fig. 2c)
then & will be positive, and if the upper two are closer to each other (Fig.
2d) i will be negative, For symmetrical distributions, such as a normal distribution,
5 will be close to zero (A; exactly zero). For L, if middle values in any subsamples
of four tend to be close (Fig. 2e) then 4 will be positive, indicating heavy tails
or positive kurtosis. {Fig. 2f) gives negative /.

L-moment ratio diagrams

An L-moment ratio diagram of L-kurtosis versus L-skewness compares sample

estimates of the dimensionless ratios 74 with their population counterparts for

a range of statistical distributions (Fig.1). L-moment diagrams are useful for
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FIG. 2—Configurations of typieal samples of sizes 2, 3 and 4. Probability density function
[dF/dx) shapes are shown over the x axes.

discerning groupings of sites with similar flood frequency behaviour, and
identifying the statistical distribution likely to adequately describe this behaviour.
L-CV versus L-skewness plots are also useful for discerning groupings. Hosking
and Wallis (1991) statistical tests are based on L-moment ratio diagrams.

NEW ZEALAND EXAMPLES — L-MOMENTS

Beable and McKerchar (1982) split New Zealand into geographical regions
to estimate mean annual flood (Q, “index flood”) and dimensionless flood
quantiles of the three-parameter Generalised Extreme Value (GEV) distribution.
With more flood data available, McKerchar and Pearson (1989, 1990) reviewed
New Zealand regional flood frequency and advocated use of the two-parameter
EV1 distribution for annual maximum flood peaks, in conjunction with contour
maps of two flood statistics: mean annual flood and dimensionless T = 100-
year return period flood (Queof Q). Hosking et al’s (1985b) at-site statistical test
based on probability-weighted moments was used for deciding if the GEV’
shape parameter k was zero (EV1). McKerchar and Pearson’s procedure
circumvented the issue of defining regions, which its predecessor (Beable and
McKerchar, 1982) had instituted.

L-moments were calculated for McKerchar and Pearson’ set of 275 annual
maximum flood series, each series having 10 or more annual maxima with a
mean record length of 21 years. Figure 3(a) shows a plot of L-kurtosis versus
L-skewness for this data. The scatter of this plot appears greater than the scatter
exhibited by a Monte Carlo experiment (similar to those conducted by Wallis,
1989) that generated 275 EVi flood series each with a record length of 21 years
{Fig. 3b). Using Hosking and Wallis’ (1991) goodness-of-fit test the GEV
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FIG. 3--L-moment ratios of (a) 275 New Zealand annual maximum flood peak series
with average record length 21 years (from McKerchar and Pearson, 1989) and
{(b) 275 Monte Carlo generated EVI series of length 21 years each.

distribution was the most likely three-parameter parent distribution for the 275
drainage basins as a whole. The GEV k parameter estimated using record-length
weighted L-moments was -0.07 i.e. EV2 distribution, but not too different to
EV1, particularly for quantiles of 100 years or less.
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Two geographical regions of South Island (dry South Canterbury on the east
coast and the wet West Coast) which have contrasting regional flood frequency
extremes in Beable and McKerchar (1982} were further analysed. Table [ gives
sample L-moments and L-moment ratios for sites in each region.

TABLE |—L-moments and L-moment ratios for annual maximum flood peak
series from two South Island regions:
(a) South Canterbury (sites from Beable and McKerchar, 1982, South
Canterbury region)
(b) West Coast (sites from Grey River south)

(a) SOUTH CANTERBURY
Site River n if la 1/ 1z la/1z
fyears) (cumecs) (cumecs) (L-skew.) {L-kurt)

69505 Orari 27 274 132 340 .081
69614 Opuha 52 203 793 341 195
69018 Opihi 52 153 728 492 332
69621 Rocky Gully 24 16.7 8.83 .640 S
71103 Hakataramea 23 172 96.4 590 398
71116 Ahuriri 23 237 66.8 325 156
71122 Maryburn [7 396 1.47 453 499
71129 Forks 24 21.9 6.22 302 160
71135 Jollie 22 69.9 21.9 409 279
(b) WEST COAST

Site River n 1y I3 I3/t la/ 1z

(years) (cumecs) (cumecs) (L-skew.) (L-kurt.)

84701 Cleddau 16 1020 129 066 A02
86802 Haast 17 3630 842 317 227
87301 Lake Moeraki 11 444 68.8 - 171 065
89601 Poerua 14 804 91.2 091 127
90604 Hokitika 17 1630 147 -.133 081
90605 Buichers 15 253 39 054 025
91104 Taramakau 15 2260 413 -004 242
91401 Grey 20 3780 542 083 220
91404 Grey 18 884 186 250 315
91405 Lake Brunner 18 727 58.6 =111 153
91407 Ahaura 19 1210 237 .146 165

The L-kurtosis-L-skewness plot (Fig, 4) shows two distinct groups of points
corresponding to each geographical region: the South Canterbury annual floed
series have greater skewness and kurtosis than those of the West Coast. Record-
length weighted average (73, 74) points for each region indicate (Fig. 4) that
South Canterbury is EV2, since its average point is close to the uppermost
part of the GEV curve, and West Coast is more kurtotic than distributions
shown in Figure L.
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FIG, 4-L-moment ratios of annual flood series from two South Island geographical

regions: West Coast and South Canterbury, Record-fength weighted regional
averages for each region are shown as solid symbols.

South Canterbury regional flood frequency

Record-length weighted, averaged, L-moment ratios were used to fit a
dimensioniess (i.e. representing Q/Q) regional GEV distribution for South
Canterbury annual maximum flood peak data. The GEV distribution function
is:

AQ)=exp {-[1 - Q- w)f ]}

where u and o are location and scale parameters respectively, and & is the shape
parameter which specifies one of three asymptotic extreme-value distribution
types: EVI1 (k = 0), EV2 (K << 0) or EV3 (k >> (). Relationships between Ay,
Az, A and w, «, & given in Hosking (1990) are used with 4/4 = 0.417 and
5ijh = 0.427 to estimate dimensionless regional GEV parameters for South
Canterbury; = 0.576,  =0.374, k& = -0.365. Dimensionless regional GEV quantiles
are given in Table 2 and Figure 5 for various annual exceedance probabilities
(AEPs). These can be multiplied Q (= /) to give regional flood estimates for
cach site e.g. 19 AEP flood (i.e. 100-year flood) estimate for Orari (site 69505)
is Quw = [5.04] x [274 cumecs] = 1380 cumecs. Three Hosking and Wallis (1991)
tests based on L-moment ratios (including L-CV} indicated that South Canterbury
was a reasonably homogenous region and that the EV2 distribution was the
best statistical distribution for this region.
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TABLE 2—Dimensionless regional GEV quantiles for South Canterbury. T is
return peried, T = 1/ AEP.

AEP: 09 08 05 02 01 005 002 001 0.001
T(years): L1l 125 2 5 10 20 50 100 1000
GEY

Regional 031 042 072 131 188 258 380 504 123
Quantiles:

=]
Y

South Canterbury

Q. /Q

3

4 5 3
Gumbel Reduced Variate [= -In(-In(1 - 1/T)))

FIG. 5—South Canterbury regional flood frequency growth curve. 1% AEP or 100-year
flood factor is 5.04, corresponding to 2 Gumbel reduced variate of 4.6.

West Coast regional flood frequency

From Figure 4, the GEV distribution does not appear kurtotic enough for the
West Coast region. Hosking and Wallis (1991) tests indicated that the West
Coast was a reasonably homogenous region and the generalised logistic (GL)
distribution was the best three-parameter distribution for the West Coast. The
GL distribution function F(Q) is,

Q=11 +{1-kQ-uw)eo}"]

where u and o are location and scale parameters respectively, and k& is the shape
parameter. Analogously to the relationship between the GEV and EV1
distributions, & = 0 for the GIL distribution is the two-parameter logistic
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distribution. Record-length weighted, averaged, L-moment ratios (h/h = 0.156,
A/L = 0.049) were used to fit dimensionless GL, GEV and Gumbel (EVI)
distributions for West Coast annual maximum flood peak data,

The three-parameter GEV distribution fitted to the West Coast data implied
an EV3 distribution (% = 0.197 >> 0) and a finite upper bound of QjQ = 2.22.
The EV] and EV?2 distributions de not have finite upper bounds. The GL
distribution specified by the fitted parameters (4 = 0.987, o = (.156, k = -0.049)
has no upper bound (since & < 0). The West Coast regional 195 AEP dimensionless
flood estimate from this distribution is 1.79, and the EV1 and EV3 regional
19 AEP estimates are 1.91 and 1.69 respectively, As noted above, the GL estimate
is the best estimate for the West Coast from a three-parameter distribution.
For all return periods there is little difference (approximately 7%) between the
EVI and G estimates, and hence the advantage of going from the two-parameter
EV1 distribution to the three-parameter GL distribution is negligible. The West
Coast regional dimensiontess EV] flood frequency estimates are given in Table
3 and shown in Figure 6.

TABLE 3—Dimensionless regional EV! quantiles for the West Coast.

AEP: 09 08 0.5 02 01 005 0.0z 001 0001
T (years): .11 1.25 2 5 10 20 50 100 1000
EVI
Regional 068 076 095 120 138 1354 175 191 242
Quantiles:

West Coast

Q:/Q

2 R 0 1 2 3 4 5
Gumbel Reduced Variate [= -In{-In(1 - 1/T)]

FIG. 6—West Coast regional flood frequency growth curve. 1% AEP or 100-year fload
factor is 1.91, corresponding to a Gumbel reduced variate of 4.6,
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IMPLICATIONS FOR NEW ZEALAND REGIONAL FLOOD
FREQUENCY

L-moments analysis indicates that annual maximum flood peaks for South
Canterbury are best described by the three-parameter EV2 distribution. This
contrasts with the McKerchar and Pearson (1989, 1990) design procedure which
prescribed the two-parameter EV distribution for annual maximum flood peaks
(contour maps of two flood statistics, Qf A and Qe Q , facilitated flood quantile
estimates for any catchment in New Zealand). However, McKerchar and Pearson
used biennial and triennial, rather than annual, sampling intervals for those
sites in South Canterbury exhibiting EV2 behaviour. In most cases the biennial
or triennial flood series were satisfactorily EV, from which an estimate of Qi
was used for mapping. Regional EV2 Qg estimates derived from Tables 1 and
2, and McKerchar and Pearson Qi estimates for South Canterbury are compared
in Table 4.

TABLE 4—Comparison of South Canterbury EV2 regional Queo estimates from
Tables 1 and 2 with McKerchar and Pearson (1989) EVI at-site
Quoo estimates derived from annual (1), biennial (2) or triennial (3)
sampling intervals.

Site EV2 regional EV1 at-site Sampling interval
Quoo (cumecs) Qioo {cumecs) (years)
69505 1380 1040 1
69614 1030 721 2
69618 771 785 3
69621 84.3 110 3
71103 867 940 2
71116 1200 623 1
71122 200 12.5 1
71129 16 58.0 !
71135 352 227 2

The differences between the regional and at-site estimates (Table 4) illustrate
the relative magnitudes of model error and sampling error in flood frequency
analysis. Regional estimates are based on the mode] assumption that all sites
in the region have identical, dimensionless, flood-frequency behaviour, ie.
homogeneous grouping. At-site estimates avoid this model error but have greater
sampling variability, particularly when fewer flood peaks are used from longer
sampling intervals, For South Canterbury the assumption of regional homogeneity
could be erroneous since its cluster of L-moment ratios (Fig.4) is quite scattered,
the same applies for the West Coast. However for both regions Hosking and
Wallis (1991) tests indicated that this degree of scatter is expected from
homogeneous regions. Alternative grouping procedures (Acreman and Wiltshire,
1989) could improve homogeneity beyond that of the arbitrary regional groupings
analysed in this paper.

Until more experience is obtained through wider application of L-moments,
the McKerchar and Pearson procedure provides the most reliable flood estimates
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for New Zealand, particularly for mean annual flood. However, for catchments
with areas less than 10 square kilometres, the McKerchar and Pearson procedure
is less precise. This was attributed chiefly to the predominance of larger catchments
masking the individuality of smaller catchments, and to a lesser extent, to shorter
lengths of record, larger errors in stage-discharge rating curves, the effects of
urbanisation and afforestation, and larger variability of short duration rainfalls.

A new study is underway investigating alternative regional flood-frequency
procedures to improve the precision of flood estimates for small New Zealand
drainage basins. This involves L-moments and their application to small ungauged
drainage basins. Regional approaches based on similarity of physical catchment
characteristics (reviewed by Acreman and Wiltshire, 1989) are being considered.

Other studies underway include application of L-moments to New Zealand
low flow frequency and an “index flood” procedure for Christchurch regional
extreme-rainfall frequency.

CONCLUSIONS

L-moments plots are useful for discerning flood differences and confirming
similarities in groupings of catchments. They allow specification of group
dimensionless flood frequency distributions, which can be dimensionalised by
estimates of mean annualflood (index flood approach). Application of L-moments
theory to New Zealand flood data indicated that South Canterbury annual flood
series are better described by the EV2 distribution rather than EV1,
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