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Abstract

Neural networks were applied to the problem of smoothing flood
hydrographs for the Waimakariri River that cannot be smoothed by other
automnatic methods. A system combining three different neural networks
gave satisfactory (and in some cases better) results than manual smoothing.
Because of the difficulty in setting up a network, however, the method of
neural networks is recommended only for problems that cannot be solved
by simpler means,

Introduction

Hydrological data sequences often contain noise. In many cases, the
noise may be eliminated by low-pass filtering (taking means, for example).
However, the original data sequence often contains important information
that should not be lost by the filtering process. One example is the use of
time series of lake levels to calculate inflow to a lake: the lake level series
must be differentiated and this exacerbates the noise. However, if daily
means are used to smooth the data, most fluctuations in the inflow with
periods of 24 hours or less are eliminated. Another example is a flood
hydrograph from the Waimakariri Gorge water-level site (Fig. 1). The
hydrograph, which is typical of all floods at the Gorge, shows fluctuations
in water level that begin just before the crest of the rising limb and continue
down the falling limb. The fluctuations are probably caused by waves of
gravel pulsing through the Gorge. Goring (1994) analysed flood waves
emerging from the Gorge and modelled their propagation down the river
to the Old SH Bridge, 51 km away, in an effort to explain the wide variation
in observed travel times (6 to 12 hours). He found that the shape of the
flood wave at the Gorge, and in particular the slope of the rising limb of
the flood wave, was the critical factor in determining how the wave would
propagate. To maodel the propagation, waves such as that shown in Figure 1
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had to be smoothed to remove the oscillations on the crest and in the
falling limb. Various standard low-pass filtering methods were tried, but
none could remove the oscillations without affecting the slope of the rising
limb. Therefore, the data had to be smoothed manually. Manual smoothing
involves drawing a curve through a set of data by eye, then re-digitising
the data. However, this method is unsatisfactory when large numbers of
such curves must be processed, as it requires a human operator, and errors
may creep in.

This note describes an alternative smoothing algorithm that uses the
technique of neural networks; it falls between the two extremes of manual
smoothing and low-pass filtering. The objective was to find an automatic
way to smooth noisy signals without losing vital information,

Figure 1 — Raw water-level data from the Waimakariri Gorge water-level site for
a typical flood on the Waimakariri River. Fluctuations, probably caused by gravel
waves, can be seen at peak flow and on the falling limb.
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Neural networks

There are many textbooks describing neural networks, e.g. Hertz et al.
(1991}, and their application to {ime-series data, e.g. Weigend and
Gershenfeld (1993), Vemuri and Rogers (1994). There are also many neural
network computer packages available. We have used the Matlab Neural
Network Toolbox, described by Demuth and Beale (1994). In this section
we briefly describe neural networks in a non-mathematical way; more
detailed information is available in the above references.

Neural networks have been developed as part of international research
into artificial intelligence, being inspired by the neurons and synapses of
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the human brain. They provide an approach which, at a very basic level,
attempts to mathematically simulate the working of the brain.

In broad terms, a neural network can be thought of as a “black box”;
input data is related to output data (or causes to effects) without prior
knowledge of the processes involved. Such models have been used
extensively in New Zealand for many years. Some examples include the
linear systems analysis technique of Goring (1984) for flood routing used
in several flood forecasting systems, the unit hydrograph method for
meodelling rainfall and runoff, and the more sophisticated, adaptive Kalman
filtering method of Bidwell and Griffiths (1994) for rainfall and runoff.
Neural networks provide a generalised framework for these methods.
Furthermore, some neural networks have a much more complicated
structure than either linear systems or Kalman filtering, and are useful in
a wide range of problems.

Fundamentally, a neural network is a group of processing elements,
some of which are joined by weighted connections. The number of
elements and the connectivity between them defines the architecture of a
neural network. A typical example is shown in Figure 2: it consists of a
set of layers joined by weighted connections. Data flow from one layer to
the next until the output layer is reached. Determination of the weights of
the connections between the layers requires a set of desired outputs for a
given set of inputs. The process of determining weights is called learning
and is analogous to the human process of learning, i.e. we observe how a
system responds to stimuli and from this predict how it will respond in
future to a similar stimulus. In most cases, learning is “supervised” i.e. for
training data, the desired output is known in advance and these values
(targets) are used in the training process. Generally, data are split into two
groups, a training set and a test set. Targets are known for the input from
both sets, but the training process uses only data from the training set.
Data from the test set is then used to establish how well the network
operates.

Figure 2 — Schematic diagram neural network architecture.
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There are many different learning algorithms (or models); some are
based purely on linear calculations while others include non-linear
interactions. The model architecture describes how the input is processed
through the weighted connections to produce output. A linear network
uses a linear combination of the weights of the connections and the input
values provided to the network.

The first stage of designing a neural network is to choose the model
and architecture; the network is then trained using a suitable data set. This
is done by supplying input to the network, and obtaining the output, which
is then compared to the target values. The process is iterative and involves
changing the weights to minimize the difference between the output from
the network and the target values for a set of given input training values.
Once training is complete, the network can be applied to the test data and
evaluated, and if the trained network performs to requirement, it can be
used either on its own, or as part of some other system.

In the next section we illustrate the steps involved in designing a neural
network by using the method to smooth Waimakariri flood hydrographs
as shown in Figure 1.

Application

The flood hydrograph for the Watmakariri Gorge (Fig. 1) consists of a
steep rising limb, a crest and a falling limb that recedes more slowly.
Oscillations start just before the crest and continue over the crest and down
the falling limb. Our goal is to remove these oscillations, but to retain the
slope of the rising limb and the overall shape of the hydrograph. This can
be done manually or by using some other smoothing technique (e.g. one
of the family of low-pass filters). A low-pass filter suppresses sudden
changes (high frequencies) in the hydrograph, while smooth (low
frequency) behaviour is relatively unaffected. Figure 3 illustrates these
methods for two typical floods. The first flood hydrograph (Fig. 3 a-c) has
a very steep rising limb, while the second (Fig. 3d-f) has a flatter rising
limb but much more noise on the crest.

In the manual method, only the sections with oscillations are smoothed;
a curve is drawn through the mean of the oscillations and the curve is
re-digitised. This method produces an excellent fit (Fig. 3a and d).

Two low-pass filters were examined: moving means (Fig. 3band e) and
a tapered boxcar, frequency domain filter (Goring and Bell, 1996) (Fig.
3c and f). Moving means are unsatisfactory—for one flood (Fig. 3b) the
slope of the rising limb is reduced significantly and for the other (Fig. 3¢)
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Figure 3 — Comparison of smoothing: (a) manual, (b} 6-term moving means and
{c) tapered boxcar filter for a flood hydrograph with a steep rising limb
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Figure 3 (cont.) - Comparison of smoothing: (d} manual, (e) 6-term moving means
and (f) tapered boxcar filter for a flood hydrograph with a lot of noise
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the noise is not eliminated. The boxcar filter smooths the noise better, but
extra oscillations remain. Neither method can distinguish between the
steepness of the rising limb and the steepness in the oscillations: if the
oscillations are removed, the slope of the rising limb is reduced, but if the
slope of the rising limb is retained, the oscillations are not eliminated.

To solve this problem, a neural network was trained to recognise rising
and falling limbs of a hydrograph, so these sections may be treated
separately, just as a human does in the manual method. This network is
called the “Rising-Falling” or “RF” network. Two further networks were
developed to deal with the rising and falling limbs.

The final system (Fig.4) consists of the three networks combined. The
first of the three indicates in what proportion to use the second two,
depending on whether the input is from a rising or a falling limb.

Figure 4 — Architecture of combination of rising and falling limb networks.
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Because there is noise at the peak of a flood, splitting the data into
rising and falling limb components is not a trivial task. A linear network is
used to classify the data into rising and falling components. The input for
a particular value consists of the value itself, and the 12 previous and the
12 subsequent values (where the data interval is 15 minutes), giving 235
input units, while the output layer consists of one unit. The corresponding
target value (desired output) is set to unity if that value is part of the rising
limb and zero otherwise. These target values are determined by hand (i.e.
manual smoothing) for floods in the training set.
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The network is trained using the floods from the training set and the
target values for those floods, Once training is complete, the weights of
the network are fixed and no further changes are made, Then, given data
{from a flood, for each value on the hydrograph, the input {(consisting of
the value itself and its neighbouring values) is supplied to the network.
The resulting value should indicate whether the original value is on a
rising or falling limb. If the result is approximately one, then the value is
likely to be on arising limb, while if the result is approximately zero, it is
likely to be part of a falling limb.

These outputs are turned into a step function based on a threshold of
0.5, with ones corresponding to rising values and zeroes otherwise. The
step function is then smoothed to achieve a smooth transition between
rising and falling states. This removes spikes in the step function, and the
resulting function has no sharp changes between states. For each flood
hydrograph, we call this corresponding smoothed step function the “rf-
function”.

‘Rising’ and ‘falling’ networks

Since the rising limb is steep and not very noisy, the ‘rising’ network
needs to closely follow the movements of the original data, while the
*falling’ network needs to perform more smoothing of the local oscillations.

The training data are split into two categories on the basis of the step
functions derived to separate the rising and falling limbs. A linear network
is trained, using as input the data corresponding to rising Hmbs, and as
targets, the corresponding values obtained from smoothing the data by
hand. Similarly, another network is trained using the data from the falling
limbs. These networks are known as the ‘rising’ network and the ‘falling’
network respectively.

Combining the networks

To obtain a smoothed flood wave we pass the unsmoothed data through
all three networks to produce the rf-function, rf, from the rising-falling
network, the rising limb, x_from the rising limb network and the falling
limb, x, from the falling limb network. Then we combine these to produce
the smoothed flood wave using: 7f* x, + (1 - 1f) - x,.

Data

Water-level data sets from 32 floods of the Waimakariri River were
analysed. These sets were split into two groups: a training group of 20
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floods and a test group of 12 floods. For each of the 32 floods, the raw
data were smoothed by hand to give target data that preserved the steepness
of the rising limb and smoothed the data on the falling limb (e.g. Fig. 5a).
For each of the 20 floods in the training set, a target step function was;‘
produced, assigning a value of unity to the rising component and zero to
the remaining data (Fig. 5b).

Figure 5 — Data supplied to network for flood in training phase: (a) flood
hydrograph with a manually fitted curve and (b) target set function for classifying
rising and falling limb.
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In the training phase, the three networks (Fig. 4) were trained, using 20
of the 32 floods. Training was linear, and using the Matlab Neural Network
Toolbox, weights were the input and corresponding target data. The
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resulting networks were tested against the data, and typical results are
presented in Figure 6. Figure. 6b shows how a step function is derived
from the output from the rising-falling network, which is subsequently
smoothed to give the rf-function. This function governs the proportions of
the output from the rising and falling networks which are used to produce
the smoothed hydrograph curve in Figure 6a.

Figure 6 — Results of training the network for a flood from the training set:
(a) flood hydrograph and {b) r-f network output with derived functions,
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Testing

The fit of the smoothed data with the target data were compared for
both the events used in the training phase and for the 12 test events. Figure 7
shows typical results for the two floods considered earlier (Fig, 3).

We also compared the success of the neural network with the other
methods of smoothing (moving means and boxcar filter) by calculating
the error as the difference between the estimated and target wave, then

90




calculating statistics of that error. The parameter used was average relative
variance, arv, described in Weigend er al. (1990), defined for a set, S, by

21:53 (o, - ik)z
Ekes (o, = H)z

arv =

fl

11
— o S x -E)7,
0-5? NS ke8 £ k

where x, is the measured value, f;.- is the estimated value, N, is the number
of elements in the set, 4 is the mean and ¢f is the variance. The
normalisation (division by the estimated variance of the data) removes
the dependence on the range of the data. Figure 8 shows the average relative
variance for the three smoothing methods for each of the 32 floods: the 20
floods in the training set and the 12 in the test set.

Discussion

The fit between target and network data (Fig. 7) is generally very good.
Indeed, in some cases for parts of the wave the neural network does a
better job of smoothing the curve than the manual method used to determine
the target wave. This raises an important factor in the use of any of
the automatic methods for smoothing, namely, that they are objective.
This has advantages and disadvantages. Manual smoothing is subject to
human error while automatic methods are not, but manual smoothing
automatically adapts to differences in the shape of the flood waves.
Designing automatic methods which do this is difficult. Neural networks
are an attempt, but the design of the architecture of the network and the
model applied is critical.

The neural network presented here smooths data better than either the
moving mean or boxcar filter methods. However, it comes with a price.
To apply low-pass filtering, we need only pass the data through the
respective algorithms to produce the results (Fig. 3a-f). Some
experimentation may be required to optimise the parameters (i.e., the
number of terms for the moving mean and the cutoff frequency for the
boxcar filter), then the goodness of fit can be assessed by eye. However,
for a neural network we need a set of target data i.e. data that have been
optimally smoothed. In most cases, this must be done by hand by someone
familiar with the data. Experimentation is required to optimise the neural
network, i.e., determine the number of units in the network and the learning
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Figure 7 — Results of training the network for the two floods shown in Figure 3.
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algorithm that should be used. Because of these disadvantages, the use of
neural networks will probably be restricted to those problems which cannot
be solved satisfactorily by other methods.

The neural network used in this application was a very simple, linear
one. Other neural networks can incorporate nonlinear interactions and
can be adaptive i.e., the network learns as it passes through the data, as
opposed to learning once and applying those rules always.

Research is continuing on the use of neural networks for real-time
detection of water-level recording measurement errors such as spikes and
gaps in the data and drifting.
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Figure 8 — Average relative variance of three smoothing methods for 32 floods.
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Following the suggestion of one of the reviewers (E. Bardsley, pers.
comm,), investigation is also underway into the efficacy of using wavelets
for smoothing hydrological data. Wavelets have the advantage that they
are localised. This means that they may automatically detect the difference
between rising and falling limbs of hydrographs, and adjust the smoothing
algorithm accordingly.

Conclusions

The method of neural networks can be used to smooth flood hydrographs
that could not be smoothed automatically using traditional methods, while
still preserving the slope of the rising limb. A network was designed which
distinguished between the rising limb and other parts of the flood wave.
This network, in conjunction with separate networks to handle the rising
and failing limbs, gave much better results for smoothing than other
automatic systems. In some cases the neural network performed the
smoothing better than the manual method. Neural networks however are
more difficult to use than other automatic methods and should be
considered only for those problems which cannot be solved by routine
methods such as low-pass filtering.
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